

Телефон: +7 (499) 685-7744 used@used4test.ru www.used4test.ru

Agilent E4438C ESG Vector Signal Generator

Data Sheet

Table of Contents

Introduction	3
Key Features	4
Specifications for Frequency and Power Characteristics	5
Frequency	5
Sweep modes	
Internal reference oscillator	5
Output power	6
Level accuracy	6
Repeatability and linearity	8
Spectral purity	10
Specifications for Analog Modulation	12
Frequency bands	12
Frequency modulation	12
Phase modulation	13
Amplitude modulation	13
Wideband AM	14
Pulse modulation	14
Internal modulation source	15
External modulation inputs	15
External burst envelope	16
Composite modulation	16
Simultaneous modulation	16
Specifications for I/Q Characteristics	17
I/Q modulation bandwidth	17
I/Q adjustments	18
Baseband generator [arbitrary waveform mode]	18
Baseband generator [real-time mode]	
Specifications for Signal Personality Characteristics	21
3GPP W-CDMA	21
IS-95 CDMA	
cdma2000 [®]	
Enhanced multitone	
AWGN	23
Custom modulation	24
GSM/GPRS	25
EDGE/EGPRS	26
Bit error rate [BER] analyzer	
General Characteristics	
Operating characteristics	
Inputs and outputs	
Ordering Information	
Related Literature	35

Introduction

Agilent Technologies E4438C ESG vector signal generator incorporates a broad array of capabilities for testing both analog and digital communications systems. Flexible options provide test solutions that will evaluate the performance of nearly all current and proposed air interface standards. Many test functions can be customized to meet the needs of proprietary and other nonstandard wireless protocols as well. You can configure your instrument to address a wide variety of tests—from altering nearly every aspect of a digital signal or signal operating environment, to creating experimental signals. This flexibility, along with an architecture that accepts future enhancements makes the E4438C ESG vector signal generator an excellent choice for wireless communications system testing now and in the future.

E4438C ESG vector signal generator

Choose your required frequency range as an Option when configuring your E4438C ESG vector signal generator. Please refer to the E4438C Configuration Guide for complete ordering information. Literature number 5988-4085EN.

Definitions

Specifications (spec): Specifications describe the instrument's warranted performance and apply after a 45 minute warm-up. All specifications are valid over the signal generators entire operating/environmental range unless otherwise noted. Supplemental characteristics, denoted typical or nominal, provide additional [nonwarranted] information useful in applying the instrument. Column headings labeled "standard" imply that this level of performance is standard, without regard for option configuration. If a particular option configuration modifies the standard performance, that performance is given in a separate column.

Typical (typ): performance is not warranted. It applies at 25°C. 80% of all products meet typical performance.

Nominal (nom): values are not warranted. They represent the value of a parameter that is most likely to occur; the expected or mean value. They are included to facilitate the application of the product.

Standard (std): No options are included when referring to the signal generator unless noted otherwise.

Key Features

Key standard features

- · Expandable architecture
- · Broad frequency coverage
- · High-stability time-base
- · Choice of electronic or mechanical attenuator
- Superior level accuracy
- · Wideband FM and FM
- · Step and list sweep, both frequency and power
- · Built-in function generator
- · Lightweight, rack-mountable
- · 1-year standard warranty
- · 2-year calibration cycle
- Broadband analog I/Q inputs
- I/Q adjustment capabilities and internal calibration routine
- · Excellent modulation accuracy and stability
- · Coherent carrier output up to 4 GHz

Optional features

- Internal baseband generator, 8 or 64 MSa (40 or 320 MB) memory with digital bus capability
- ESG digital input or output connectivity with N5102A Baseband Studio digital signal interface module
- · 6 GB internal hard drive
- · Internal bit error rate (BER) analyzer
- · Enhanced phase noise performance
- · High output power with mechanical attenuator
- · Move all front panel connectors to the rear panel
- Real-time channel emulation, up to 4x2 MIMO, with the N5106A PXB MIMO receiver tester
- · Signal Creation software
 - Signal Studio software
 - Embedded software
 - A complete list of software can be found in the ordering information section or at www.agilent.com/find/signalstudio

This document contains the measured specifications for the instrument platform and personalities. It does not contain a full list of features for all optional personalities. Please consult the individual product overviews for each personality for a full listing of all features and capabilities. These are listed at the end of this document.

Specifications for Frequency and Power Characteristics

Frequency

Frequency range	
Option 1	
501	250 kHz to 1 GHz
502	250 kHz to 2 GHz
503	250 kHz to 3 GHz
504	250 kHz to 4 GHz
506	250 kHz to 6 GHz [requires Option UNJ]
Frequency minimu	m 100 kHz ²
Frequency resoluti	on 0.01 Hz
Eroguanov awitahir	ng angod 3

Frequency switching speed ³

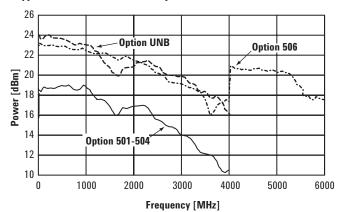
	Options 501-504		Options 501-504 with Option UNJ		Option 506 with UNJ	
	Freq. 4	Freq./Amp. ⁵	Freq. 4 Freq./Amp. 5		Freq. 4	Freq./Amp. 5
Digital mod	dulation		•			
on	(< 35 ms)	(< 49 ms)	(< 35 ms)	(< 52 ms)	(< 41 ms)	(< 57 ms)
off	(< 9 ms)	(< 9 ms)	(< 9 ms)	(< 9 ms)	(< 16 ms)	(< 17 ms)
[For hops < Digital mod	< 5 MHz witl dulation	nin a band]				
on	(< 9 ms)	(< 9 ms)	(< 9 ms)	(< 9 ms)	(< 33 ms)	(< 53 ms)
off	(< 9 ms)	(< 9 ms)	(< 9 ms)	(< 9 ms)	(< 12 ms)	(< 14 ms)
Phase offset Phase is adjustable remotely [LAN, GPIB, RS-232] or via front panel in nominal 0.1° increments] or via	

Sweep modes

Operating modes	Frequency step, amplitude step and arbitrary list		
Dwell time	1 ms to 60 s		
Number of points	2 to 65,535 (step sweep)		
	2 to 161 (list sweep)		

Internal reference oscillator

Stability ³		
	Standard	With Option UNJ or 1E5
Aging rate	<±1 ppm/yr	< ±0.1 ppm/yr or < ±0.0005 ppm/day after 45 days
Temp [0 to 55° C]	(< ±1 ppm)	(< ±0.05 ppm)
Line voltage	(< ±0.1 ppm)	(< ±0.002 ppm)
Line voltage range	(+5% to -10%)	(+5% to -10%)
RF reference output		
Frequency	10 MHz	
Amplitude	4 dBm ±2 dB	
RF reference input require	ments	
	Standard	With Option UNJ or 1E5
Frequency	1, 2, 5, 10 MHz ± 10 ppm	1, 2, 5, 10 MHz ±.2 ppm
Amplitude	-3.5 dBm to 20 dBm	
Input impedence	50 Ω	


- 1. The E4438C is available as a vector platform only. For analog models refer to the E4428C.
- 2. Performance below 250 kHz not guaranteed.
- 3. Parentheses denote typical performance.
- 4. To within 0.1 ppm of final frequency above 250 MHz or within 100 Hz below 250 MHz.
- 5. Frequency switching time with the amplitude settled within ± 0.1 dB.

Specifications for Frequency and Power Characteristics

Output power

Power			
	Options 501-504	With Option UNB	Option 506
250 kHz to 250 MHz	+11 to -136 dBm	+15 to -136 dBm	+12 to -136 dBm
> 250 MHz to 1 GHz	+13 to -136 dBm	+17 to -136 dBm	+14 to -136 dBm
> 1 to 3 GHz	+10 to -136 dBm	+16 to -136 dBm	+13 to -136 dBm
> 3 to 4 GHz	+7 to -136 dBm	+13 to -136 dBm	+10 to -136 dBm
> 4 to 6 GHz	N/A	N/A	+10 to -136 dBm

Typical maximum available power

Level resolution	0.02 dB						
Level range with Attenuator Hold active							
	Options 501-504	with Option UNB	Option 506				
250 kHz to 1 GHz	23 dB	27 dB	24 dB				
> 1 to 3 GHz	20 dB	26 dB	23 dB				
> 3 to 4 GHz	17 dB	23 dB	20 dB				
> 4 to 6 GHz	N/A	N/A	20 dB				

Level accuracy [dB]

Options 501-504 1, 2

	Power level			
	+7 to -50 dBm	< -50 to -110 dBm		< –127 dBm
250 kHz to 2.0 GHz	±0.5	±0.5	±0.7	(±1.5)
2.0 to 3 GHz	±0.6	±0.6	±0.8	(± 2.5)
3 to 4 GHz	±0.7	±0.7	±0.9	(±2.5)

With Option UNB 2,3

		Pow	er level	
	+10 to	< –50 to	< –110 to	< -127 dBm
	-50 dBm	-110 dBm	-127 dBm	
250 kHz to 2.0 GHz	±0.5	±0.7	±0.8	(±1.5)
> 2.0 to 3 GHz	±0.6	±0.8	±1.0	(±2.5)
> 3 to 4 GHz	±0.8	±0.9	±1.3	(±2.5)

2. Parentheses denote typical performance.

Quoted specifications for 23 °C ± 5 °C.
 Accuracy degrades by less than 0.03 dB/°C over full temperature range. Accuracy degrades by 0.3 dB above +7 dBm, and by

0.8 dB above +10 dBm.

- 3. Quoted specifications for 23 °C \pm 5 °C. Accuracy degrades by less than 0.03 dB/°C over full temperature range. Accuracy degrades by 0.2 dB above +10 dBm, and by 0.8 dB above +13 dBm.
- Quoted specifications for 23 °C ± 5 °C. Accuracy degrades by less than 0.02 dB/°C over full temperature range. Accuracy degrades by 0.2 dB above +7 dBm.

Option 506 ^{2, 4}

		Power level		
	+7 to	< –50 to	< –110 to	< -127 dBm
	-50 dBm	-110 dBm	-127 dBm	
250 kHz to 2.0 GHz	±0.6	±0.8	±0.8	(±1.5)
> 2.0 to 3 GHz	±0.6	±0.8	±1.0	(±2.5)
> 3 to 4 GHz	±0.8	±0.9	±1.5	(±2.5)
> 4 to 6 GHz	±0.8	±0.9	(± 1.5)	

Specifications for Frequency and Power Characteristics

Level accuracy with modulation turned on [relative to CW]

[with PRBS modulated data; Conditions:

if using I/Q inputs, $\sqrt{12 + Q2} = 0.5$ Vrms, nominal] ¹

Level accuracy with ALC on

 $\pi/4$ DQPSK or QPSK formats

Conditions: With raised cosine or root-raised cosine filter

> and a \geq 0.35; with 10 kHz \leq symbol rate \leq 1 MHz; at RF freq ≥ 25 MHz; power ≤ max specified -3 dB

Options 501-504 Option 506 ±0.15 dB ±0.25 dB

Constant amplitude formats [FSK, GMSK, etc]

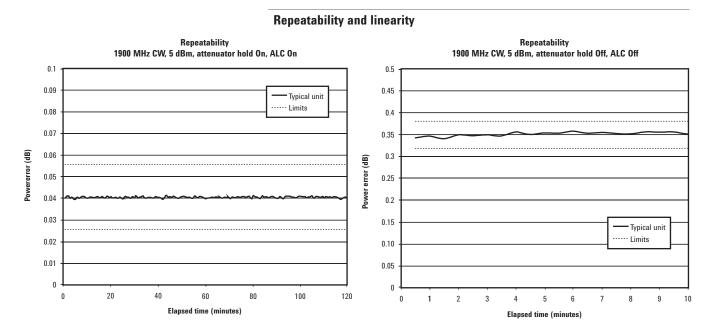
Options 501-504 Option 506 $\pm 0.1 \; dB$ ±0.15 dB

Level accuracy with ALC off 1,2

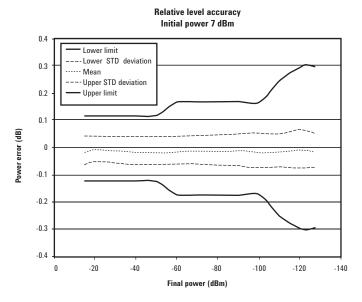
Conditions:

(±0.15 dB) [relative to ALC on]

After power search is executed, with burst off.

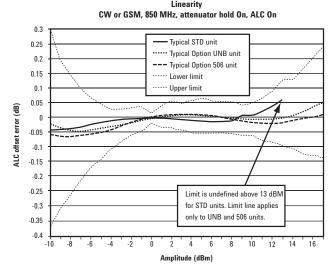

Level switching sneed 1

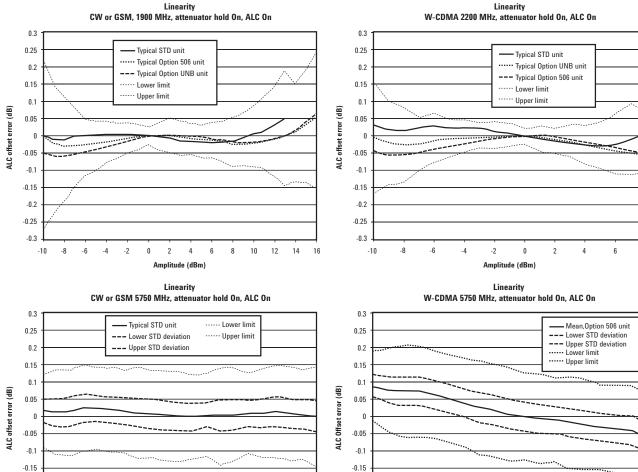
SVV	itelling specu			
		Options	with	Option 506
		501-504	Option UNB	
	Normal operation [ALC on]	(< 15 ms)	(< 21 ms)	(< 21 ms)
	When using power search manual	(< 83 ms)	(< 95 ms)	(< 95 ms)
	When using power search auto	(< 103 ms)	(< 119 ms)	(< 119 ms)


^{1.} Parentheses denote typical performance.

^{2.} When applying external I/Q signals with ALC off, output level will vary directly with I/Q input level.

Specifications for Frequency and Power Characteristics


Repeatability measures the ability of the instrument to return to a given power setting after a random excursion to any other frequency and power setting. It is a relative measurement that reflects the difference in dB between the maximum and minimum power readings for a given setting over a specific time interval. It should not be confused with absolute power accuracy, which is measured in dBm.¹


Relative level accuracy measures the accuracy of a step change from any power level to any other power level. This is useful for large changes (i.e. 5 dB steps). ¹

^{1.} Repeatability and relative level accuracy are typical for all frequency ranges.

Specifications for Frequency and Power Characteristics

Linearity measures the accuracy of small changes while the attenuator is held in a steady state (to avoid power glitches). This is useful for fine resolution changes. ¹

1. Repeatability and relative level accuracy are typical for all frequency ranges.

-0.2

-0.25

-0.2

-0.25 -0.3

Amplitude (dBm)

Specifications for Frequency and Power Characteristics

Spectral purity

SSB CW Phase noise [at 20 kHz offset] 1

	Standard	With Option UNJ	
at 500 MHz	(< -124 dBc/Hz)	<-135 dBc/Hz, (< -138 dBc/Hz)	
at 1 GHz	(< -118 dBc/Hz)	<-130 dBc/Hz, (< -134 dBc/Hz)	
at 2 GHz	(< -112 dBc/Hz)	<-124 dBc/Hz, (< -128 dBc/Hz)	
at 3 GHz	(< -106 dBc/Hz)	<-121 dBc/Hz, (< -125 dBc/Hz)	
at 4 GHz	(< -106 dBc/Hz)	<-118 dBc/Hz, (< -122 dBc/Hz)	
at 6 GHz	N/A	<-113 dBc/Hz, (< -117 dBc/Hz)	

Residual FM ¹ [CW mode, 0.3 to 3 kHz BW, CCITT, rms]

Option UNJ Standard

 $< N \times 1 Hz (< N \times 0.5 Hz)^{2}$

Phase noise mode 1 < N x 2 Hz Phase noise mode 2 < N x 4 Hzv

Harmonics 1,3

[output level \leq +4 dBm, \leq +7.5 dBm Option UNB,

 \leq +4.5 dBm Option 506] < -30 dBc above 1 GHz,

(< -30 dBc 1 GHz and below)

Nonharmonics 1,4

 $[\le +7 \text{ dBm output level}, \le +4 \text{ dBm Option 506}]$

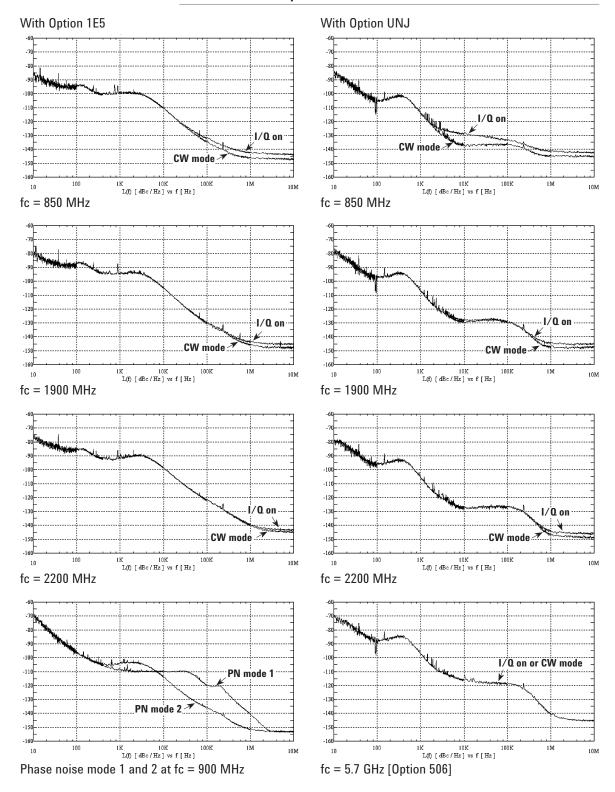
Standard		With Op	tion UNJ ⁶	
	> 3 kHz offset	> 10 kHz offset	> 3 kHz < 10 kHz offset	> 10 kHz offset
250 kHz to 250 MHz	<-53 dBc (<-68 dBc)	(< -58 dBc)	<-65 dBc	(< -58 dBc)
250 MHz to 500 MHz	<-59 dBc (<-74 dBc)	(< -81 dBc)	$< -80 \; \mathrm{dBc}$	<-80 dBc
500 MHz to 1 GHz	<-53 dBc (<-68 dBc)	(< -75 dBc)	<-80 dBc	<-80 dBc
1 to 2 GHz	<-47 dBc (<-62 dBc)	(< -69 dBc)	<-74 dBc	<-74 dBc
2 to 4 GHz	<-41 dBc (<-56 dBc)	(< -63 dBc)	<-68 dBc	<-68 dBc
4 to 6 GHz	N/A N/A	N/A	<-62 dBc	<-62 dBc

Subharmonics

		Standard	With Option UNJ
<u> </u>	1 GHz	None	None
>	· 1 GHz	<-40 dBc	None

Jitter in µUI 1, 7, 8

Carrier frequency	SONET/SDH data rates	rms jitter bandwidth	Standard (µUI rms)	With Option UNJ (μUI rms)
155 MHz	155 MB/s	100 Hz to 1.5 MHz	(359)	(78)
622 MHz	622 MB/s	1 kHz to 5 MHz	(158)	(46)
2,488 GHz	2488 MB/s	5 kHz to 15 MHz	(384)	(74)


Jitter in seconds 1, 7, 8

Carrier frequency	SONET/SDH data rates	rms jitter bandwidth	Standard (μUI rms)	With Option UNJ (μUI rms)
155 MHz	155 MB/s	100 Hz to 1.5 MHz	(2.4 ps)	(0.6 ps)
622 MHz	622 MB/s	1 kHz to 5 MHz	(255 fs)	(74 fs)
2,488 GHz	2488 MB/s	5 kHz to 15 MHz	(155 fs)	(30 fs)

- 1. Parentheses denote typical performance.
- 2. Refer to frequency bands on page 12 for N values.
- 3. Harmonic performance outside the operating range of the instrument is typical.
- 4. Spurs outside the operating range of the instrument are not specified. Broadband noise is not tested.
- 5. Specifications apply for FM deviations < 100 kHz and are not valid on FM. For non-constant amplitude formats, unspecified spur levels occur up to the second harmonic of the baseband rate.
- 6. Specifications apply for CW mode only.
- 7. Calculated from phase noise performance in CW mode only at -2.5 dBm for standard instruments, -0.5 dBm with Option 506, and +2.5 dBm with Option UNB.
- 8. For other frequencies, data rates, or bandwidths, please contact your sales representative.

Specifications for Frequency and Power Characteristics

Characteristic SSB phase noise

Frequency bands

Band	Frequency range	N number	
1	250 kHz to ≤ 250 MHz	1	
2	> 250 MHz to ≤ 500 MHz	0.5	
3	> 500 MHz to ≤ 1 GHz	1	
4	> 1 to ≤ 2 GHz	2	
5	> 2 to ≤ 4 GHz	4	
6	> 4 to ≤ 6 GHz	8	

Frequency modulation 1, 2

Maximum deviation ³

Resolution

	Standard	With Option UNJ
	N x 8 MHz	N x 1 MHz
1	0.1% of deviation of	or 1 Hz, whichever is greater

Modulation frequency rate 4 [deviation = 100 kHz]

Coupling	1 dB bandwidth	3 dB bandwidth	
FM path 1[DC]	DC to 100 kHz	(DC to 10 MHz)	
FM path 2 [DC]	DC to 100 kHz	(DC to 0.9 MHz)	
FM path 1 [AC]	20 Hz to 100 kHz	(5 Hz to 10 MHz)	
FM path 2 [AC]	20 Hz to 100 kHz	(5 Hz to 0.9 MHz)	

Deviation accuracy ³ [1 kHz rate, deviation < N x 100 kHz]

 $<\pm~3.5\%$ of FM deviation + 20 Hz

Carrier frequency accuracy relative to CW in DCFM 3,5

±0.1% of set deviation + (N x 1 Hz)

Distortion ³ [1 kHz rate, dev.= N x 100 kHz]

< 1%

FM using external inputs 1 or 2

Sensitivity $1 V_{peak}$ f or indicated deviation

Input impedance 50 Ω , nominal

FM path 1 and FM path 2 are summed internally for composite modulation. The FM 2 path is limited to a maximum rate of 1 MHz. The FM 2 path must be set to a deviation less than FM 1 path.

^{1.} All analog performance above 4 GHz is typical.

^{2.} For non-Option UNJ units, specifications apply in phase noise mode 2 [default].

^{3.} Refer to frequency bands on this page to compute specifications.

^{4.} Parentheses denote typical performance.

At the calibrated deviation and carrier frequency, within 5 °C of ambient temperature at time of calibration.

Phase modulation 1,2

Resolution	0.1% of set deviat	ion	
Modulation freq	uency response ^{3, 4}		
Standard			
		Allowable	rates [3 dB BW]
Mode	Maximum deviation	ΦM path 1	ΦM path 2
Normal BW	N x 80 radians	DC to 100 kHz	DC to 100 kHz
High BW ⁶	N x 8 radians	(DC to 1 MHz)	(DC to 0.9 MHz)
	N x 1.6 radians	(DC to 10 MHz)	(DC to 0.9 MHz)
With option UNJ			
		Allowable rates [3 dB BW]	
Mode	Maximum deviation	ΦM path 1	ΦM path 2
Normal BW	N x 10 radians	DC to 100 kHz	DC to 100 kHz
High BW	N x 1 radians	(DC to 1 MHz)	(DC to 0.9 MHz)

Deviation accuracy [1 kHz rate, Normal BW mode]

 $< \pm 5\%$ of deviation + 0.01 radians

Distortion 3 [1 kHz rate, deviation < 80 radians on standard model, < 10 N radians on Option UNJ models, Normal BW mode]

< 1%

ΦM using external inputs 1 or 2

Sensitivity $1 V_{\text{peak}}$ f or indicated deviation

Input impedance 50 Ω , nominal

composite modulation. The ΦM 2 path is limited to a maximum rate of 1 MHz. ΦM path 2 must be set to a

deviation less than the FM path 1.

Amplitude modulation ^{1, 6} [fc > 500 kHz]

Range	0 to 1	00%	
Resolution	0.1%		
Rates [3 dB ban	dwidth]		
DC co	upled	0 to 10 kHz	
AC co	upled	10 Hz to 10 kHz	
Accuracy 4, 7		1 kHz rate	< ±(6% of setting +1%)
Distortion 4.7[1.1	·Uz roto	TUN1	

Distortion 4.7 [1 kHz rate, THD]

	Option 501-504/Option UNJ	Option 506
30% AM	< 1.5%	< 1.5%
90% AM	(< 4%)	(< 5%)

oply in phase noise mode 2 [default]. AM using external inputs 1 or 2

Sensitivity 1 \	_{peak} f or indicated deviation
-----------------	--

Input impedance 50 Ω , nominal

Paths AM path 1 and AM path 2 are summed

internally for composite modulation.

1.	All analog performance above 4 GHz is
	tvpical.

- 2. For non-Option UNJ units, specifications apply in phase noise mode 2 [default].
- 3. Refer to frequency bands on page 12 for N.
- 4. Parentheses denote typical performance.
- 5. Bandwidth is automatically selected based on deviation.
- AM is typical above 3 GHz or if wideband AM or I/Q modulation is simultaneously enabled.
- 7. Peak envelope power of AM must be 3 dB less than maximum output power below 250 MHz.

Wideband AM		
Wideballu Alvi	Rates [1 dB bandwidth] ¹	
	ALC on	(400 Hz to 40 MHz)
	ALC off	(DC to 40 MHz)
	Wideband AM using extern	al 1 input only
	Sensitivity	0.5 V = 100%
	Input impedance	50 Ω, nominal
Pulse modulation	On/off ratio ¹	
	≤ 4 GHz	> 80 dB
	> 4 GHz	(> 64 dB)
	Rise/fall times ¹	(150 ns)
	Minimum width ¹	V V
	ALC on	(2 µs)
	ALC off	(0.4 µs)
	Pulse repetition frequency 1	
	ALC on	(10 Hz to 250 kHz)
	ALC off	(DC to 1.0 MHz)
		o CW at ≤ 4 dBm standard, ≤ 7.5 dBm Option UNB, option 506]
	(< ±1 dE	
	Pulse modulation using exte	,
	Input voltage	
	RF on	> +0.5 V, nominal
	RF off	< +0.5 V, nominal
	Input impedance	50 Ω, nominal
	Internal pulse generator	
	Square wave rate	0.1 Hz to 20 kHz
	Pulse	
	Period	8 µs to 30 seconds
	Width	4 µs to 30 seconds
	Resolution	2 µs

^{1.} Parentheses denote typical performance.

^{2.} With ALC off, specifications apply after the execution of power search. With ALC on, specifications apply for pulse repetition rates ≤ 10 kHz and pulse widths ≥ 5 μ s.

Internal modulation source

Provides modulating signal for FM, AM, pulse and phase modulation signals, and provides LF output source for basic function generator capability.

Waveforms	s Sine, squ	are, ramp, triangle, pulse, noise
Rates rang	е	
S	Sine	0.1 Hz to 100 kHz
S	Square, ramp, trian	gle 0.1 Hz to 20 kHz
Resolution	0.1 Hz	
Frequency a	ccuracy Same as	RF reference source
Swept sine	mode [frequency,	phase continuous]
Operating modes Frequency range Sweep time		Triggered or continuous sweeps
		0.1 Hz to 100 kHz
		1 ms to 65 sec
F	Resolution	1 ms
Dual sinew	ave mode	
F	requency range	0.1 Hz to 100 kHz
Д	Amplitude ratio	0 to 100%
	Amplitude ratio	0.1%
	esolution	
LF audio ou	t mode	
A	Amplitude	0 to 2.5 V_{peak} into 50 Ω
٢	Jutnut imnedance	50.0 nominal

Output impedance 50Ω , nominal

Noise

Noise with adjustable amplitude generated as a peak-to-peak value (RMS value is approximately 80% of the displayed value)

External modulation inputs

Modulation types

Ext 1 FM, ΦM, AM, pulse, and burst envelope

Ext 2 FM, Φ M, AM, and pulse

LO/HI annunciator [100 Hz to 10 MHz BW, AC coupled inputs only]. Activated when input level error exceeds 3% [nominal].

External burst envelope

Input vo	ltage			
	RF on	0 V		
	RF off	-1.0 V		
	Linear control	0 to -1 V		
	range			
On/off i	atio ¹			
	Condition: V _{in} bel	ow –1.05 V		
		≤ 4 GHz > 4 GHz	> 75 dB (> 64 dB)	

Rise/fall time ¹

Condition: With rectangular input

 $(< 2 \mu s)$

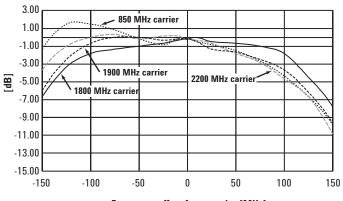
Minimum burst repetiti	on frequency ¹	
ALC on	(10 Hz)	
ALC off	DC	
Input port	External 1	
Input impedance	50 Ω, nominal	

Composite modulation

AM, FM, and Φ M each consist of two modulation paths which are summed internally for composite modulation. The modulation sources may be any two of the following: Internal, External 1, External 2.

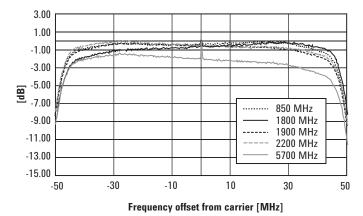
Simultaneous modulation

Multiple modulation types may be simultaneously enabled. For example, W-CDMA, AM, and FM can run concurrently and all will affect the output RF. This is useful for simulating signal impairments. There are some exceptions: FM and FM cannot be combined; AM and Burst envelope cannot be combined; Wideband AM and internal I/Q cannot be combined. Two modulation types cannot be generated simultaneously by the same modulation source.


^{1.} Parentheses denote typical performance.

I/Q modulation bandwidth

I/Q inputs


Input impedance $50 \Omega \text{ or } 600 \Omega$ Full scale input ¹ $\sqrt{I^2 + \Omega^2} = 0.5 V_{rms}$

I/Q bandwidth using external I/Q source (ALC off) ²

Frequency offset from carrier [MHz]

I/Q bandwidth using internal I/Q source (Options 001, 002, 601, 602)

^{1.} The optimum I/Q input level is $\sqrt{I^2 + Q^2} = 0.5 V_{ms}$, I/Q drive level affects EVM, origin offset, spectral regrowth, and noise floor. Typically, level accuracy with ALC on will be maintained with drive levels between 0.25 and 1.0 V_{ms} .

^{2.} Parentheses denote typical performance.

I/Q adjustments

	Source	Parameter	Range
	I/Q baseband inputs	Impedance I offset [600 Ω only] Q offset [600 Ω only] 20 Hz to 100 kHz	50 or 600 Ω ± 5 V ± 5 V (5 Hz to 0.9 MHz)
	I/Q baseband outputs	I/Q offset adjustment I/Q offset resolution I/Q gain balance I/Q attenuation I/Q low pass filter	± 3 V 1 mV ± 4 dB 0 to 40 dB 40 MHz, through
	RF output	I/Q offset adjustment I/Q gain balance I/Q attenuation I/Q quad skew [≤ 3.3 GHz] [> 3.3 GHz] I/Q low pass filter	± 50% ± 4 dB 0 to 40 dB ± 10° ± 5° 2.1 MHz, 40 MHz, through
I/Q bas	seband outputs ¹		
	Differential outputs Single ended Frequency range Output voltage into 50 Ω	I, I, Q, Q I, Q DC to 40 MHz [with sine (1.5 V P-P) [with sinewa	-

Baseband generator [arbitrary waveform mode] [Option 601 or 602]

Channels	2 [I and Q]		
Resolution 16 bits [1/65,536]			
Arbitrary	waveform memory		
	Maximum playback capacity	8 megasamples (MSa)/channel [Option 601] 64 MSa/channel [Option 602]	
Maximum storage capacity		1.2 GSa [Option 005] 2.8 MSa [Standard]	
Waveforn	n segments		
	Segment length	60 samples to 8 or 64 MSa	
Maximum number of segments		1,024 [8 MSa volatile memory] 8,192 [64 MSa volatile memory]	
Minimum memory allocation		256 samples or 1 KB blocks	

50 Ω, nominal

Maximum total number of segment files

stored in the non-volatile

Output impedance

16,384 file system

Continuously repeating Sequencing

Maximum number of sequences 16,384 [shared with number of segments]

Maximum segments/sequence 32,768 [including nested segments]

Maximum segment repetitions

65,536

^{1.} Parentheses denote typical performance.

Clock		
	Sample rate	1 Hz to 100 MHz
	Resolution	0.001 Hz
	Accuracy	Same as timebase +2 ⁻⁴²
		[in non-integer applications]
Baseband		
	40 MHz	used for spur reduction
	2.1 MHz	used for ACPR reduction
	Through	used for maximum bandwidth
	ction filter: [fixed]	
	50 MHz	[used for all symbol rates]
	spectral purity ¹	
-	sinewave]	
	Harmonic distortion	
	100 kHz to 2 MHz	(< -65 dBc)
	Phase noise	(<-127 dBc/Hz)
	[baseband output of 10 l	MHz sinewave at 20 kHz offset]
	IM performance	(<-74 dB)
	[two sinewaves at 950 k	Hz and 1050 kHz at baseband]
Triggers		
	Types	Continuous, single, gated, segment advance
	Source	Trigger key, external, remote [LAN, GPIB, RS-232]
	External polarity	Negative, positive
	External delay time	10 ns to 40 sec plus latency
	External delay resolution	10 ns
	Trigger accuracy	±1/sample rate
	Trigger Intency	Soo usors guido
	Trigger latency	See users guide
Markers		-
Markers [Markers a	are defined in a seg	ment during the waveform generation process,
Markers [Markers a or from the	are defined in a seg e ESG front panel. <i>I</i>	-
Markers [Markers a or from the feature of	are defined in a seg e ESG front panel. <i>A</i> the ESG.]	ment during the waveform generation process, A marker can also be tied to the RF blanking
Markers [Markers a or from the feature of	are defined in a seg e ESG front panel. <i>I</i>	ment during the waveform generation process,
Markers [Markers a or from the feature of	are defined in a seg e ESG front panel. A the ESG.] Marker polarity Number of markers	ment during the waveform generation process, A marker can also be tied to the RF blanking Negative, positive
Markers [Markers a or from the feature of Multicarri	are defined in a seg e ESG front panel. A the ESG.] Marker polarity Number of markers ier	ment during the waveform generation process, A marker can also be tied to the RF blanking Negative, positive 4
Markers [Markers a or from the feature of Multicarri	are defined in a seg e ESG front panel. A the ESG.] Marker polarity Number of markers	ment during the waveform generation process, A marker can also be tied to the RF blanking Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending
Markers [Markers a or from the feature of Multicarri	are defined in a seg e ESG front panel. A the ESG.] Marker polarity Number of markers ier Number of carriers	ment during the waveform generation process, A marker can also be tied to the RF blanking Negative, positive 4
Markers [Markers a or from th feature of Multicarri	are defined in a seg e ESG front panel. A the ESG.] Marker polarity Number of markers ier	ment during the waveform generation process, A marker can also be tied to the RF blanking Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type]
Markers [Markers a or from th feature of Multicarri	are defined in a seg e ESG front panel. A the ESG.] Marker polarity Number of markers ier Number of carriers	ment during the waveform generation process, A marker can also be tied to the RF blanking Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type]
Markers [Markers a or from the feature of Multicarri	are defined in a seg e ESG front panel. A the ESG.] Marker polarity Number of markers ier Number of carriers Frequency offset [per carrier]	ment during the waveform generation process, A marker can also be tied to the RF blanking Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] –40 MHz to +40 MHz
Markers [Markers a or from the feature of Multicarri	are defined in a seg e ESG front panel. A the ESG.] Marker polarity Number of markers ier Number of carriers Frequency offset [per carrier] Power offset [per carrier]	ment during the waveform generation process, A marker can also be tied to the RF blanking Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] –40 MHz to +40 MHz
Markers [Markers a or from the feature of Multicarri	are defined in a seg e ESG front panel. A the ESG.] Marker polarity Number of markers ier Number of carriers Frequency offset [per carrier] Power offset [per carrier]	ment during the waveform generation process, A marker can also be tied to the RF blanking Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] -40 MHz to +40 MHz 0 dB to -40 dB
Markers [Markers a or from the feature of Multicarri	are defined in a seg e ESG front panel. A the ESG.] Marker polarity Number of markers ier Number of carriers Frequency offset [per carrier] Power offset [per carrier]	ment during the waveform generation process, A marker can also be tied to the RF blanking Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] -40 MHz to +40 MHz 0 dB to -40 dB
Markers a for from the feature of Multicarri	are defined in a seg e ESG front panel. A the ESG.] Marker polarity Number of markers ier Number of carriers Frequency offset [per carrier] Power offset [per carrier]	ment during the waveform generation process, A marker can also be tied to the RF blanking Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] –40 MHz to +40 MHz 0 dB to –40 dB BPSK, QPSK, QQPSK, π/4DQPSK, 8PSK, 16PSK, D8PSK
Markers a from the feature of Multicarri	are defined in a seg e ESG front panel. A the ESG.] Marker polarity Number of markers ier Number of carriers Frequency offset [per carrier] Power offset [per carrier]	ment during the waveform generation process, A marker can also be tied to the RF blanking Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] -40 MHz to +40 MHz 0 dB to -40 dB BPSK, QPSK, QQPSK, π/4DQPSK, 8PSK, 16PSK,
Markers a for from the feature of Multicarri	are defined in a seg e ESG front panel. A the ESG.] Marker polarity Number of markers ier Number of carriers Frequency offset [per carrier] Power offset [per carrier] PSK QAM	ment during the waveform generation process, A marker can also be tied to the RF blanking Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] –40 MHz to +40 MHz 0 dB to –40 dB BPSK, QPSK, QQPSK, π/4DQPSK, 8PSK, 16PSK, D8PSK 4, 16, 32, 64, 128, 256
Markers a for from the feature of Multicarri	are defined in a seg e ESG front panel. A the ESG.] Marker polarity Number of markers ier Number of carriers Frequency offset [per carrier] Power offset [per carrier] PSK CAM FSK	ment during the waveform generation process, A marker can also be tied to the RF blanking Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] –40 MHz to +40 MHz 0 dB to –40 dB BPSK, QPSK, QQPSK, π/4DQPSK, 8PSK, 16PSK, D8PSK 4, 16, 32, 64, 128, 256
Markers [Markers a or from the feature of Multicarri	are defined in a seg e ESG front panel. A the ESG.] Marker polarity Number of markers ier Number of carriers Frequency offset [per carrier] Power offset [per carrier] PSK CAM FSK MSK	ment during the waveform generation process, A marker can also be tied to the RF blanking Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] –40 MHz to +40 MHz 0 dB to –40 dB BPSK, QPSK, QQPSK, π/4DQPSK, 8PSK, 16PSK, D8PSK 4, 16, 32, 64, 128, 256
Markers [Markers a or from the feature of Multicarri Modulatio	are defined in a seg e ESG front panel. A the ESG.] Marker polarity Number of markers ier Number of carriers Frequency offset [per carrier] Power offset [per carrier] PSK OAM FSK MSK ASK	ment during the waveform generation process, A marker can also be tied to the RF blanking Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] –40 MHz to +40 MHz 0 dB to –40 dB BPSK, QPSK, QQPSK, π/4DQPSK, 8PSK, 16PSK, D8PSK 4, 16, 32, 64, 128, 256 Selectable: 2, 4, 8, 16
Markers [Markers a or from the feature of Multicarri Modulatio Data Baseband	are defined in a seg e ESG front panel. A the ESG.] Marker polarity Number of markers ier Number of carriers Frequency offset [per carrier] Power offset [per carrier] PSK OAM FSK MSK ASK	ment during the waveform generation process, A marker can also be tied to the RF blanking Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] –40 MHz to +40 MHz 0 dB to –40 dB BPSK, QPSK, QQPSK, π/4DQPSK, 8PSK, 16PSK, D8PSK 4, 16, 32, 64, 128, 256 Selectable: 2, 4, 8, 16
Markers [Markers a or from the feature of Multicarri Modulatio Data Baseband	are defined in a seg e ESG front panel. A the ESG.] Marker polarity Number of markers ier Number of carriers Frequency offset [per carrier] Power offset [per carrier] PSK OAM FSK MSK ASK	ment during the waveform generation process, A marker can also be tied to the RF blanking Negative, positive 4 Up to 100 [limited by a max bandwidth of 80 MHz depending on symbol rate and modulation type] -40 MHz to +40 MHz 0 dB to -40 dB BPSK, QPSK, QQPSK, π/4DQPSK, 8PSK, 16PSK, D8PSK 4, 16, 32, 64, 128, 256 Selectable: 2, 4, 8, 16

^{1.} Parentheses denote typical performance.

Baseband generator [real-time mode] [Option 601 or 602]

Basic modu		custom format]	
	PSK MSK ASK QAM FSK	BPSK, QPSK, OQPSK, π/4DQPSK, 8PSK, 16PSK, D8PSK User-defined phase offset from 0 to 100° User-defined depth from 0.001 to 100% 4, 16, 32, 64, 128, 256 Selectable: 2, 4, 8, 16 level symmetric, C4FM User defined: Custom map of up to 16 deviation level	
		Symbol rate Maximum deviation	
		< 5 MHz 4 times symbol rate	
		> 5 MHz, 20 MHz < 50 MHz	
		Resolution: 0.1 Hz	
I/Q	Custom map	of 256 unique values	
FIR filter			
	Selectable	Nyquist, root Nyquist, Gaussian, rectangular, Apco 25 a : 0 to 1, B_b T: 0.1 to 1	
	Custom FIR	16-bit resolution, up to 64 symbols long, automatically resampled to 1024 coefficients [max] > 32 to 64 symbol filter: symbol rate ≤ 12.5 MHz > 16 to 32 symbol filter: symbol rate ≤ 25 MHz Internal filters switch to 16 tap when symbol rate i between 25 and 50 MHz	
Symbol rat	е		
	is adjustable	serial data, symbol rate from 1000 symbols/sec m symbol rate of 50 Mbits/sec #bits/symbol	
	1000 symbo 8 bits per sy	ally generated data, symbol rate is adjustable from bols/sec to 50 Msymbols/sec. and a maximum of symbol. Modulation quality may be degraded at high tes. See data types for memory requirements.	
Baseband r	eference freq	uency	
	Input	Data clock can be phase locked to an external reference. 13 MHz for GSM, 250 kHz to 100 MHz in W-CDMA and cdma2000 $^{\rm 1.2}$ ECL, CMOS, TTL compatible, 50 Ω AC coupled	
Frame trigg	er delay cont	rol	
	Range	0 to 1,048,575 bits	
	Resolution	1 bit	

^{1.} Performance below 1 MHz not specified.

^{2.} When used, this baseband reference is independent of the 10 MHz RF reference.

Data types		
Internally	generated data	
	random patterns ng sequence	PN9, PN11, PN15, PN20, PN23 Any 4-bit sequence Other fixed patterns
Direct-pat	tern RAM [PRAM]	
Max size	Option 601 Option 602	8 Mbits 64 Mbits [each bit uses an entire sample space]
Use	Non-standard framing	
User file		
Max size	Option 601 Option 602	800 kB 6.4 MB
Use	Continuous modulation	or internally generated TDMA standard
Externally	generated data	
Type Inputs Inputs		sync % of specified data rate
nternal burst s	<u> </u>	·
	h standards and bit rate	S
	l time range I delay range	Up to 30 bits 0 to 63.5 bits

Specifications for Signal Personality Characteristics

3GPP W-CDMA [arbitrary waveform mode ³] [Option 400]

Error vector magnitude ²

[1.8 GHz < f_c < 2.2 GHz, root Nyquist filters, 40 MHz baseband filter, EVM optimization mode 3.84 Mcps chip rate, \leq 4 dBm, \leq 7 dBm with Option UNB] 1 DPCH \leq 1.8%, (0.9%)

Level accuracy [relative to CW at 800, 900, 1800, 1900, 2200 MHz] $^{\mathrm{2}}$

[\leq 2.5 dBm standard, 7.5 dBm for Option UNB, and 4.5 dBm for Option 506] \pm 0.7 dB (\pm 0.35 dB)

Adjacent channel leakage ratio ²

[1.8 GHz < fc < 2.2 GHz, default W-CDMA filters, 3.84 Mcps chip rate, \leq 0 dBm Option UNB, \leq -2 dBm Option 506, \leq -3 dBm standard in Optimize ADJ mode]

1 DPCH -65 dBc (-67 dBc) Test Model 1 -63 dBc (-66 dBc) + 64 DPCH

Alternate channel leakage ratio ²

[1.8 GHz < fc < 2.2 GHz, default W-CDMA filters, 3.84 Mcps chip rate, \leq 2.5 dBm standard, \leq 4.5 dBm Option 506, \leq 7.5 dBm Option UNB, in Optimize ALT mode]

+ 64 DPCH

^{1.} PN23 is too large for Option 601 for modulation formats with 3, 5, 6, or 7 bits/symbol if the bit rate is greater than 50 Mbit/sec.

^{2.} Parentheses denote typical performance.

^{3.} Valid for 23° ±5° C.

IS-95 CDMA [arbitrary waveform mode 1] [Option 401]

Spurious emissions

[dBc, IS-95 modified filter with equalizer and amplitude = \le -5 dBm standard, \le -3 dBm for Option 506, \le 0 dBm for Option UNB] 2

	0.885 to	1.25 MHz	1.25 to 1	1.98 MHz	1.98 to	5 MHz
Frequencies/offsets	Standard	Option 506	Standard	Option 506	Standard	Option 506
Reverse						
30 – 200 MHz 700 – 1000 MHz >1000 – 2000 MHz	(–74) –73 (–77) –76 (–79)	(–74) –73 (–77) –76 (–79)	(-77) (-81) (-83)	(-77) (-81) (-83)	(–77) (–85) (–85)	(-77) (-85) (-85)
9/64 channels						
30 – 200 MHz 700 – 1000 MHz >1000 – 2000 MHz	(-70) -73 (-76) -72 (-76)	(-70) -73 (-76) -71 (-76)	(-73) (-79) (-79)	(-73) (-79) (-79)	(-76) (-82) (-82)	(-76) (-82) (-82)

Rho 1 [\le 4 dBm standard and Option 506, or \le 7 dBm Option UNB, IS-95 filter, \le 2 GHz] $\rho \ge$ 0.9992 (.9998)

cdma2000 [arbitrary waveform mode] [Option 401]

Spurious emissions

[dBc, IS-95 modified filter with equalizer and amplitude = \leq -5 dBm standard, \leq -3 dBm for Option 506, \leq 0 dBm for Option UNB]

	01	ffsets from center of carri	er
Frequencies/offsets	2.135 to 2.50 MHz	2.50 to 3.23 MHz	3.23 to 10 MHz
Forward 9 channel, SR3	3/multi-carrier ^{1, 3}		
30 - 200 MHz	(-70)	(-69)	(-69)
700 – 1000 MHz	(-75)	(-74)	(-77)
>1000 - 2000 MHz	(–75)	(-74)	(–77)

	Ui	tsets from center of carri	er
Frequencies/offsets	2.655 to 3.75 MHz	3.75 to 5.94 MHz	5.94 to 10 MHz
Forward 9 channel, SR3	R/DS1, ⁴		
30 – 200 MHz 700 – 1000 MHz >1000 – 2000 MHz	(-76) (-80) (-80)	(-78) (-83) (-83)	(-75) (-85) (-85)
Reverse 5 channel, SR3	P/DS 1, 3		
30 – 200 MHz 700 – 1000 MHz >1000 – 2000 MHz	(-78) (-82) (-82)	(-78) (-83) (-83)	(-75) (-85) (-85)

Error vector magnitude

[\leq 4 dBm standard and Option 506, \leq 7 dBm for Option UNB] [825 to 2100 MHz, SR3 pilot, IS-95 filter, which is optimized for EVM] ¹ EVM \leq 2.1%, (\leq 1.5%)

^{1.} Performance below 1 MHz not specified.

^{2.} When used, this baseband reference is independent of the 10 MHz RF reference.

AWGN [real-time mode] [Option 403]

Noise bandwidth	50 kHz to 80 MHz			
Crest factor [output power set at least 16 dB below maximum power]				
	> 16 dB			
Randomness	89 bit pseudo-random generation, repetition period 3 x 10 ⁹ years			
Carrier to noise ratio	Magnitude error ≤ 0.2 dB at baseband I/Q outputs			

AWGN [arbitrary waveform mode] [Option 403]

Noise bandwidth	50 kHz to 15 MHz
Randomness	14 to 20 bit pseudo-random waveform with fixed or random seed
Repetition period	0.4 ms to 2 s (dependent on noise bandwidth and waveform length)

Custom modulation [real-time mode]

Custom digitally modulated signals [real-time mode] 1,2

Modulation	QPSK	π/4DQPSK	16 Q Am	2FSK	GMSK
Filter		Root Nyquist		Gaı	ıssian
Filter factor [a or B_bT]	0.25	0.25	0.25	0.5	0.5
Modulation index	N/A	N/A	N/A	0.5	N/A
Symbol rate [Msym/s]	4	4	4	1	1

	Error	vector magnitu [% rms]	de ^{3, 4}	Shift error ^{3,4} [% rms]	Global phase error ^{3, 4} [degrees rms]
fc = 1 GHz	1.1 (0.7)	1.1 (0.7)	1.0 (0.6)	1.3 (0.8)	0.4 (0.2)
fc = 2 GHz	1.2 (0.8)	1.2 (0.8)	1.0 (0.6)	1.4 (0.9)	0.5 (0.3)
fc = 3 GHz	1.6 (1.0)	1.6 (1.0)	1.5 (0.9)	1.8 (1.0)	0.7 (0.4)
fc = 4 GHz	2.5 (1.4)	2.5 (1.3)	3.3 (1.9)	3.3 (2.0)	1.0 (0.6)
fc = 5 GHz	1.5 (1.0)	1.5 (1.0)	1.2 (0.8)	1.8 (1.2)	0.6 (0.3)
fc = 6 GHz	1.8 (1.2)	1.8 (1.2)	2.0 (1.4)	2.0 (1.4)	0.8 (0.4)

Internal modulation using real-time TDMA personalities [Option 402] ²

	NA	DC	PI	OC .	Pł	HS	TET	RA ⁴	DECT		DCS, CS	EDGE
Error vector magnitude ^{6,4} [% rms] Low EVM mode Low ACP mode		(0.7) .2)		(0.7) .9)		(0.5) .6)		(0.5) .0)				1.2 (0.6)
Global phase error ² rms pk	N,	/A	N.	/A	N,	/A	N,	/A	N/A		(0.3) (1.0)	N/A
Deviation accuracy ² [kHz, rms]	N,	/A	N.	/A	N.	/A	N.	/A	2.5 (1.1)	N.	/A	N/A
Channel spacing [kHz]	3	0	25		300		25		1728	200		200
Adjacent channel power ² [ACP] (Low ACP mode, dBc) at adjacent channel ⁷ at 1st alternate channel ⁷ at 2nd alternate channel ⁷ at 3rd alternate channel ⁷	(-35) (-80) (-84) (-85)	(-34) (-79) (-83) (-84)	Cont. - (-74) - (-82)	- (-74) - (-82)	Cont. - (-81) (-82) -	- (-76) (-79)	(-70) (-81) (-82) (-83)	(-63) (-80) (-82) (-83)	N/A	(-37) (-71) (-84) (-85)	(-37) (-70) (-81) (-81)	N/A
Support burst type		tom vn TCH	Custom up/down TCH up Vox			tom sync	up cont up no	stom rol 1 & 2 ormal, normal	Custom dummy B 1 & 2 traffic B, low capacity	nor Fcorr,	tom, mal, sync, , access	
Scramble burst type					Y	es	Y	es				

- This level of performance can be attained using the external I/Q inputs, provided the quality of the baseband signal meets or exceeds that of the ESG baseband generator.
- 2. Parentheses denote typical performance.
- 3. Specifications apply at power levels \leq +4 dBm [\leq +5 dBm for Option 506, and \leq +8 dBm for Option UNB] with default scale factor of I/O outputs.
- 4. Valid after executing I/Q calibration and maintained within +/- 5 °C of the calibration temperature.
- 5. ACP for TETRA is measured over a 25 kHz bandwidth, with an 18 kHz root raised cosine filter. Low ACP mode is valid at power levels ≤ -1 dBm ≤ 1 dBm for Option 506 and $\leq +4$ dBm for Option UNB].
- Specifications apply for the symbol rates, filter, filter factors [a or BbT] and default scaling factor specified for each standard, and at power levels ≤ +7 dBm [≤ +10 dBm for Option UNB].
- 7. The "channel spacing" determines the offset size of the adjacent and alternate channels: Adjacent channel offset = 1 x channel spacing, 1st alternate channel = 2 x channel spacing, 2nd alternate channel = 3 x channel spacing, etc.

GSM/GPRS [real-time mode] [Option 402]

Multiframe output data generation				
Coding scheme	Full-rate speech [TCH/FS] CS-1, CS-4			
Data	PN9 or PN15 The selected data sequence is coded continuously across the RLC data block as per ETSI TS 100 909, 3GPP TS 05.03, V8.9.0, 2000-11 [release 1999] An independent version of the selected data sequence is coded across the MAC header.			
Frame structure	26-frame multi-frame structure as per ETSI GSM, 05.01 version 6.1.1 [1998-07]. [Coding is done on frames 0-11, 13-24, of the multi-frame. Frame 25 is idle [RF blanked].]			
Adjacent timeslots				
Data	PN9, PN15 coded as per ETSI TS 100 909, 3GPP TS 05.03, V8.9.0, 2000-11 [release 1999].			
Frame structure	26-frame multi-frame structure as per ETSI GSM, 5.01 version 6.1.1 [1998-07].			
Alternate time slot power I [Valid for standard attenuato	evel control r only. Not applicable to Option UNB or Option 506]			
Amplitude is settled within 0.5 dB in 20 μ secs, +4 to -136 dBm at 23 \pm 5 °C				

EDGE/EGPRS [real-time mode] [Option 402]

Multiframe output data generation				
Coding scheme	MCS-1: uplink and downlink, MCS-5: uplink and			
	downlink,			
	MCS-9: uplink and downlink, E-TCH/F43.2			
Data	PN9 or PN15			
	The selected data sequence is fully coded			
	continuously across the RLC data blocks accord			
	ing to MCS-1, MCS-5, MCS-9 or E-TCH/F43.2.			
	An independent version of the selected data			
	sequence is coded across the unused RLC/MA			
	header fields [The CPS header field is as define			
	in GSM 04.60 V8.50].			
Frame structure	52-frame multi-frame structure for EDGE/EGPR			
	channel as per ETSI TS 100 909, 3GPP TS 05.03,			
	V8.9.0, 2000-11 [release 1999]. [Coding is done			
	on frames 0-11, 13-24, 26-37, 39-50 on a 52			
	PDCH multi-frame. Frame 25 and 51 are idle [RF			
	blanked].]			
Adjacent timeslots				
Data	Coded MCS-1, MCS-5 or MCS-9 with continuou			
	PN9 or PN15 sequence data payload.			
	Uncoded PN9, PN15.			
	Note: Maximum of 4 timeslots can be turned or with EDGE/EGPRS multi-frame coded data.			
	with LDGE/ EGF no multi-mame coded data.			
Frame structure	FDGE/FGPBS PDCH multi-frame.			
Traine Structure	Repeating EDGE frame.			
	Hopeating EDUL Haille.			

Bit error rate [BER] analyzer [Option UN7]

Clock rate	100 Hz to 60 MHz
Supported data patterns	PN9, 11, 15, 20, 23
Resolution	10 Digits
Bit sequence length	100 bits to 4,294 Gbits after synchronization
Features	
	Input clock phase adjustment and gate delay
	Adjustable input threshold
	Hi/lo threshold selectable from 0.7 V [TTL], 1.4 V [TTL]
	1.65 V [CMOS 3.3], 2.5 V [CMOS 5.0]
	Direct measurement triggering
	Data and reference signal outputs
	Real-time display
	Bit count
	Error-bit-count
	Bit error rate
	Pass/fail indication
	Valid data and clock detection
	Automatic re-synchronization
	Special pattern ignore

Operating characteristics

Power requirement	90 to 254 V; 5 300 W maxim	50/60/400 Hz nor	ninal;			
Operating temperature range ¹	0 to 55 °C					
Storage temperature range	–40 to 71 °C	–40 to 71 °C				
Shock and vibration	Meets MIL-S	TD-28800E Type I	II, Class 3			
Storage registers	data files, no files and wav of flash mem Option 005, tl on available r	Memory is shared by instrument states, user data files, non-volatile waveforms, sweep list files and waveform sequences. There is 14 MB of flash memory standard in the ESG. With Option 005, there is 6 GB of storage. Depending on available memory, a maximum of 1000 instrument states can be saved.				
Weight	< 16 kg [35 lb	o.] net, < 23 kg [50) lb.] shipping			
Dimensions		126 mm W x 432 r 6.8 in W x 17 in D				
Remote programming Interface	GPIB [IEEE-4: RS-232, LAN	88.2-1987] with lis [10BaseT].	sten and talk,			
Control languages ²		1996.0, also comp /C/D/J1 mnemo	patible with 8656B nics.			
Functions controlled	All front panel functions except power switc and knob.					
ISO compliant	registered fac	SG is manufactur cility in concurrent commitment to d				
Reverse power protection						
	Options	501-504	Option 506			
250 kHz to 2 GHz > 2 to 4 GHz > 4 to 6 GHz Max DC voltage	44 dBm N	47 dBm (50 W) 30 44 dBm (25 W) 30 N/A 30 50 V				
SWR ⁴	Options 501-504	Options 501-504	Option 506			
		with Option UNB	with Option UNB			
250 kHz to 2.2 GHz > 2.2 GHz to 3 GHz > 3 GHz to 4 GHz > 4 GHz to 6 GHz	(< 1.5:1) (< 1.4:1) (< 1.5:1) N/A	(< 1.5:1) (< 1.5:1) (< 1.7:1) N/A	,			

- 1. Save and recall of user files and instrument states from non-volatile storage is guaranteed only over the range 0 to 40 °C.
- 2. ESG series does not implement 8657A/B "Standby" or "On" [R0 or R1, respectively] mnemonics.
- 3. Options 501-504 are protected to levels indicated, however, the reverse power protection circuit will trip at nominally 30 dBm (1 W).
- 4. Parentheses denote typical performance.

Accessories

Inputs and outputs

All front panel connectors can be moved to rear with Option 1EM.

Transits case	Part number 9211-1296
10 MHz input	Accepts a 1, 2, 5, or 10 MHz ±0.2 ppm [high-stability timebase] reference signal for operation with an external timebase. Nominal input level –3.5 to +20 dBm, impedance 50 Ω. [BNC, rear panel]
10 MHz output	Outputs the 10 MHz reference signal. Level nominally $+3.9$ dBm ± 2 dB. Nominal output impedance 50 Ω . [BNC, rear panel]
Alternate power input	Accepts CMOS ¹ signal for synchronization of external data and alternate power signal timing. The damage levels are –0.5 to +5.5 V. [Auxiliary I/O connector, rear panel]
Baseband generator reference input	Accepts 0 to +20 dBm sinewave, or TTL squarewave, to use as reference clock for the baseband generator. Phase locks the internal data generator to the external reference; the RF frequency is still locked to the 10 MHz reference. Rate is 250 kHz to 100 MHz, 50 Ω nominal, AC coupled. [BNC, rear panel] [SMB with Option 1EM]
Burst gate input	The burst gate in connector accepts a CMOS ¹ signal for gating burst power in digital modulation applications. The burst gating is used when you are externally supplying data and clock information. The input signal must be synchronized with the external data input that will be output during the burst. The burst power envelope and modulated data are internally delayed and re-synchronized. The input signal must be CMOS high for normal burst RF power or CW RF output power and CMOS low for RF off. The damage levels are –0.5 to +5.5 V.
	This female BNC connector is provided on signal generators with Option 601 or 602. On signal generators with Option 1EM, this input is relocated to a rear panel SMB connector. With Option 401, this connector is used for the even second synchronization input.
Coherent carrier output ²	Outputs RF modulated with FM or ΦM, but not IQ, pulse or AM. Nominal power –2 dBm ±5 dB. Nominal impedance 50 ohms. Frequency range from > 250 MHz to 4 GHz. For RF carriers below this range, output frequency = 1 GHz – frequency of RF output. Damage levels 20 VDC and 13 dBm reverse RF power. [SMA, rear panel]

^{1.} Rear panel inputs and outputs are 3.3 V CMOS, unless indicated otherwise. CMOS inputs will accept 5 V CMOS, 3 V CMOS, or TTL voltage levels.

^{2.} Coherent carrier is modulated by FM or FM when enabled.

Data clock input	The CMOS1 compatible data clock connector accepts an externally supplied data-clock input for digital modulation applications. The expected input is a bit clock signal where the falling edge is used to clock the data and symbol sync signals
	The maximum clock rate is 50 MHz. The damage levels are $-0.5\ \text{to}\ +5.5\ \text{V}.$
	This female BNC connector is provided on signal generators with Option 601 or 602. On signal generators with Option 1EM this input is relocated to a rear panel SMB connector.
Data clock output	Relays a CMOS1 bit clock signal for synchronizing serial data. [Auxiliary I/O connector, rear panel]
Data input	The CMOS ¹ compatible data connector accepts an externally supplied data input for digital modulation applications. CMOS high is equivalent to a data 1 and a CMOS low is equivalent to a data 0.
	The maximum data rate is 50 Mb/s. The data must be valid on the data clock falling edges [normal mode] or the symbol sync falling edges [symbol mode]. The damage levels are -0.5 to $+5.5$ V.
	This female BNC connector is provided on signal generators with Option 601 or 602. On signal generators with Option 1EN this input is relocated to a rear panel SMB connector.
Data output	Outputs serial data from the internal data generator or the externally supplied signal at the data input. CMOS ¹ signal. [Auxiliary I/O connector, rear panel]
Event 1 output	In real-time mode, outputs pattern or frame synchronization pulse for triggering or gating external equipment. May be set to start at the beginning of a pattern, frame, or timeslot and is adjustable to within \pm one timeslot with one bit resolution.
	In arbitrary waveform mode, this connector outputs the timing signal generated by marker 1. [BNC, rear panel] [SMB with Option 1EM]
Event 2 output	In real-time mode, outputs data enabled signal for gating external equipment. Applicable when external data is clocked into internally generated timeslots. Data is enabled when signal is low.
	In arbitrary waveform mode, this connector outputs the timing signal generated by marker 2. [BNC, rear panel] [SMB with Option 1EM]
Event 3 output	In arbitrary waveform mode, this connector outputs the timing signal generated by marker 3. [Auxiliary I/O connector, rear panel]
Event 4 output	In arbitrary waveform mode, this connector outputs the timing signal generated by marker 4. [Auxiliary I/O connector, rear panel]

^{1.} Rear panel inputs and outputs are 3.3 V CMOS, unless indicated otherwise. CMOS inputs will accept 5 V CMOS, 3 V CMOS, or TTL voltage levels.

External 1 input	This BNC input connector accepts a $\pm 1~V_{peak}$ signal for AM, FM, pulse, burst, and phase modulation. For all these modulations, $\pm 1~V_{peak}$ produces the indicated deviation or depth. When ac-coupled inputs are selected for AM, FM, or phase modulation and the peak input voltage differs from 1 V_{peak} by more than 3%, the hi/lo annunciator light on the display. The input impedance is 50 Ω and the damage levels are 5 V_{rms} and 10 V_{peak} .
	If you configure your signal generator with Option 1EM, this input is relocated to a female SMB connector on the rear panel.
External 2 input	This BNC input connector accepts a $\pm 1~V_{peak}$ signal for AM, FM, phase modulation, and pulse modulation. With AM, FM, or phase modulation, $\pm 1~V_{peak}$ produces the indicated deviation or depth. With pulse modulation, $\pm 1~V$ is on and 0 V is off. When ac-coupled inputs are selected for AM, FM, or phase modulation, and the peak voltage differs from 1 V_{peak} by more than 3%, the hi/lo annunciator light on the display. The input impedance is 50 Ω and the damage levels are 5 V_{rms} and 10 V_{peak} .
	If you configure your signal generator with Option 1EM, this input is relocated to a female SMB connector on the rear panel.
GPIB	Allows communication with compatible devices. [rear panel]
l input	Accepts an I input either for I/Q modulation or for wideband AM. Nominal input impedance 50 or 600 Ω . Damage levels are 1 V_{rms} and 10 V_{peak} . [BNC, front panel] [SMB with Option 1EM]
I out and Q out ¹	The I out and Q out connectors output the analog components of I/Q modulation from the internal baseband generator. The nominal output impedance of these connectors are 50 Ω , DC-coupled. The damage levels are > +3.5 V and < -3.5 V. The output signal levels into a 50 Ω load are as follows:
	- (0.5 $\ensuremath{V_{\text{peak}}}\xspace$), corresponds to one unit length of the I/Q vector.
	• $(0.7 V_{peak})$, for peaks for p/4 DQPSK.
	• (1.6 V_{p-p}) maximum [Options 601, 602, 001, 002 only].
	These female BNC connectors are provided on signal generators with Option 601 or 602. On signal generators with Option 1EM, these inputs are relocated to rear panel SMB connectors.

I and Q out	I and Ω are used in conjunction with I and Ω to provide a balanced baseband stimulus. Balanced signals are signals present in two separate conductors that are symmetrical about the common mode offset, and are opposite in polarity [180 degrees out of phase].	
	These female BNC connectors are provided only on signal generators with Option 601 or 602. If you configure your signal generator with Option 1EM, these inputs are relocated to rear panel SMB connectors.	
LF output	Outputs the internally-generated LF source. Outputs 0 to 2.5 V_{peak} into 50 Ω , or 0 to 5 Vpeak into high impedance. [BNC, front panel] [SMB with Option 1EM]	
Pattern trigger input	Accepts CMOS ¹ signal to trigger internal pattern or frame generator to start single pattern output. Minimum pulse width 100 ns. The damage levels are –0.5 to +5.5 V. [BNC, rear panel] [SMB with Option 1EM]	
Q input	Accepts a Q input for I/Q modulation. Nominal input impedance 50 or 600 ohms, damage levels are 1 V_{rms} and 10 V_{peak} . [BNC, front panel] [SMB with Option 1EM]	
RF output	Nominal output impedance 50 Ω . [type-N female, front panel]	
Sweep output	Generates output voltage, 0 to +10 V when signal generator is sweeping. Output impedance < 1 Ω , can drive 2000 Ω . [BNC, rear panel] [SMB with Option 1EM]	
Symbol sync input	The CMOS ¹ compatible symbol sync connector accepts an externally supplied symbol sync for digital modulation applications. The expected input is a symbol clock signal. It may be used in two modes. When used as a symbol sync in conjunction with a data clock, the signal must be high during the first data bit of the symbol. The signal must be valid during the falling edge of the data clock signal and may be a single pulse or continuous. When the symbol sync itself is used as the [symbol] clock, the falling edge is used to clock the data signal.	
	The maximum clock rate is 50 MHz. The damage levels are -0.5 to $+5.5$ V. [BNC, front panel]	
	This female BNC connector is provided on signal generators with Option 601 or 602. On signal generators with Option 1EM, this input is relocated to a rear panel SMB connector.	
Symbol sync output	Outputs CMOS ¹ symbol clock for symbol synchronization, one data clock period wide. [Auxiliary I/O connector, rear panel]	
Trigger input	Accepts CMOS ¹ signal for triggering point-to-point in manua sweep mode, or to trigger start of LF sweep. the damage lev els are –0.5 to +5.5 V. [BNC, rear panel]	
Trigger output	Outputs a TTL signal: high at start of dwell, or when waiting for point trigger in manual sweep mode; low when dwell is over or point trigger is received, high or low $2 \mu s$ pulse at start of LF sweep. [BNC, rear panel]	

^{1.} Rear panel inputs and outputs are 3.3 V CMOS, unless indicated otherwise. CMOS inputs will accept 5 V CMOS, 3 V CMOS, or TTL voltage levels.

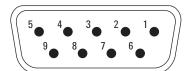
With Option UN7 BER data, BER clock BER gate	Accepts CMOS 1 or 75 Ω input. Polarity is selected. Clock duty and inputs cycle is 30% to 70%. [SMB, rear panel]
BER sync loss output	Outputs a CMOS ¹ signal that is low when sync is lost. Valid only when measure end signal is high. [Auxiliary I/O connector, rear panel]
BER no data output	Outputs a CMOS ¹ signal that is low when no data is detected. Valid only when measure end is high. [Auxiliary I/O connector, rear panel]
BER error-bit-output	Outputs CMOS ¹ signal when error bit is detected. Pulse width matches the input clock. [Auxiliary I/O connector, rear panel]
BER test result output	Outputs a CMOS ¹ signal that is high for fail and low for pass. Valid only on measure end signal falling edge. [Auxiliary I/O connector, rear panel]
BER measure end output	Outputs a CMOS ¹ signal that is high during measurement. Trigger events are ignored while high. [Auxiliary I/O connector, rear panel]
BER measure trigger	Accepts CMOS ¹ signal to initiate BER measurement. Polarity is selectable; available when trigger source is selected as "AUX I/O". Damage levels are The damage levels are –0.5 to +5.5 V. [Auxiliary I/O connector, rear panel]
With Option 300	
321.4 MHz input	Accepts a 321.4 MHz IF signal for GSM/EDGE/loopback testing. Input amplitude range -7 dBm to -22 dBm. Nominal input impedance 50 Ω . [SMB, rear panel]

LAN connector

LAN communication is supported by the signal generator via the LAN connector. It is functionally equivalent to the GPIB connector. The LAN connector enables the signal generator to be remotely programmed by a LAN-connected computer. The distance between a computer and the signal generator is limited to 100 meters [10BaseT]. For more information about the LAN, refer to the *Getting Started chapter in the Programming Guide*.

Data transfer speeds ² LAN [FTP]	file transfer to volatile memory to hard drive	(700 KB/sec) (500 KB/sec)
LAN [SCPI]	command transfer to volatile memory to hard drive	(146 KB/sec) (128 KB/sec)
nternal file transfer from hard drive to volatile memory		(1280 KB/sec)

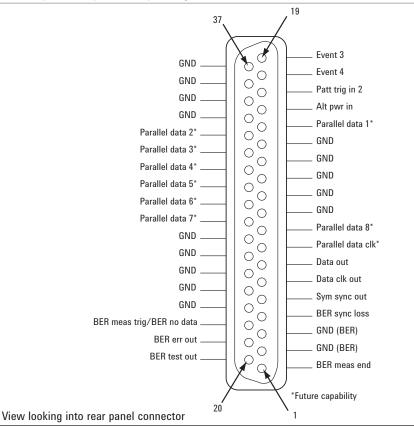
Agilent's IO Libraries Suite ships with the E4438C to help you quickly establish an error-free connection between your PC and instruments – regardless of the vendor. It provides robust instrument control and works with the software development environment you choose.


^{1.} Rear panel inputs and outputs are 3.3 V CMOS, unless indicated otherwise. CMOS inputs will accept 5 V CMOS, 3 V CMOS, or TTL voltage levels.

^{2.} Parentheses denote typical performance.

RS-232 connector

This male DB-9 connector is an RS-232 serial port that can be used for controlling the signal generator remotely. It is functionally equivalent to the GPIB connector. The following table shows the description of the pinouts. The pin configuration is shown below.


Pin number	Signal description	Signal name	
1	No connection		
2	Receive data	RECV	
3	Transmit data	XMIT	
4	+5 V		
5	Ground, 0 V		
6	No connection		
7	Request to send	RTS	
8	Clear to send	CTS	
9	No connection		

View looking into rear panel connector

Auxiliary I/O connector

This male DB-9 connector is an RS-232 serial port that can be used for controlling the signal generator remotely. It is functionally equivalent to the GPIB connector. The following table shows the description of the pinouts. The pin configuration is shown below.

Mating connector

37 pin male D-subminiature, available from AMP, 3M, others.

Ordering Information 1

Performance enhancement options

•	501	1 GHz frequency range	
•	502	2 GHz frequency range	
•	503	3 GHz frequency range	
•	504	4 GHz frequency range	
•	506	6 GHz frequency range [requires option UNJ, includes mechanical attenuator]	
•	UNB	High output power with mechanical attenuator [optional with 501, 502, 503, 504] [included with 506]	
•	UNJ	Enhanced phase noise performance [includes 1E5]	
•	1E5	High-stability time base	
•	1EM	Moves all front panel connectors to rear	
•	003 ²	Enables ESG digital outputs with N5102A	
•	004 2	Enables ESG digital inputs with N5102A	
•	601	Internal baseband generator with 8 MSa and digital bus capability [40 MB] of memory	
•	602	Internal baseband generator with 64 MSa and digital bus capability [320 MB] of memory	
•	005 ³	6 GB internal hard drive	
•	UN7	Internal bit-error-rate analyzer	
•	1CP	Rack mount kit with handles	
•	1CN	Front handle kit	
•	• E4438C-400 3GPP W-CDMA with HSDPA		
•	• E4438C-401 cdma2000 and IS-95A		

System accessories

Embedded signal creation software 3, 4

- E4438C-402 TDMA (GSM, GPRS, EDGE, EGPRS, DADC, PCD, PHS, TETRA, DECT)
- E4438C-403 calibrated noise
- · E4438C-409 GPS
- E4438C-422 scenario generator for GPS

PC-based signal creation software 3,4

- · E4438C-221 to 229 waveform license 5-packs
- E4438C-250 to 259 waveform license 50-packs
- E4438C-407 Signal Studio for S-DMB
- · E4438C-419 Signal Studio for 3GPP W-CDMA HSPA
- E4438C-SP1 Signal Studio for Jitter Injection
- N7600B Signal Studio for 3GPP W-CDMA FDD
- N7601B Signal Studio for 3GPP2 CDMA
- N7602B Signal Studio for GSM/EDGE
- N7606B Signal Studio for Bluetooth ™
- · N7611B Signal Studio for Broadcast Radio
- · N7612B Signal Studio for TD-SCDMA
- N7613A Signal Studio for 802.16-2004 (WiMAX ™)
- · N7615B Signal Studio for 802.16 WiMAX
- · N7616B Signal Studio for T-DMB
- · N7617B Signal Studio for 802.11 WLAN
- · N7620A Signal Studio for Pulse Building
- · N7621B Signal Studio for Multitone Distortion
- N7622A Signal Studio Toolkit
- · N7623B Signal Studio for Digital Video
- N7624B Signal Studio for 3GPP LTE
- N7625B Signal Studio for 3GPP LTE TDD

Baseband products 5

- N5102A digital signal interface module
- · N5106A PXB baseband generator and channel emulator
- 1. All options should be ordered using E4438C-xxx, where the xxx represents the option number. For more information, please refer to the configuration guide publication number 5988-4085EN.
- Requires either Option 601 or 602 (baseband generator) to function.
- Requires Option 001, 002, 601, or 602.
- For the latest information visit www.agilent.com/find/signalstudio.
- For details visit www.agilent.com/find/basebandstudio and www.agilent.com/find/PXB.

Related Literature

Application literature

- 3GPP Long Term Evolution: System Overview, Product Development and Test Challenges, literature number 5989-8139EN, May 2008.
- BER and Subjective Evaluation for DVB-T/H Receiver Test, literature number 5989-8446EN, May 2008.
- Typical GPS Receiver Verification Tests Using a GPS Signal Simulator, literature number 5989-8572EN, May 2008.
- Designing and Testing 3GPP W-CDMA Base Transceiver Stations, Application Note 1355, literature number 5980-1239E, March 2006.
- MIMO Channel Modeling and Emulation Test Challenges, literature number 5989-8973EN, October 2008.
- RF Source Basics, a self-paced tutorial (CD-ROM), literature number 5980-2060E, October 2000.
- Digital Modulation in Communications Systems—An Introduction, Application Note 1298, literature number 5965-7160E, October 2000.
- Using Vector Modulation Analysis in the Integration, Troubleshooting and Design of Digital Communications Systems, Product Note, literature number 5091-8687E, March 2001.
- Testing CDMA Base Station Amplifiers, Application Note 1307, literature number 5967-5486E May 2000.
- Understanding GSM/EDGE Transmitter and Receiver Measurements for Base Transceiver Stations and Their Components, Application Note 1312, literature number 5968-2320E August 2002.
- Understanding CDMA Measurements for Base Stations and their Components, Application Note 1311, literature number 5968-0953E, June 2000.
- Testing and Troubleshooting Digital RF Communications Receiver Designs, Application Note 1314, literature number 5968-3579E, March 2002.

Additional application literature may be found by going to www.agilent.com/find/signalstudio and selecting the "Library" tab.

Product literature

- E4438C ESG Vector Signal Generator, Brochure, literature number 5988-3935EN.
- E4438C ESG Vector Signal Generator, Configuration Guide, literature number 5988-4085EN.
- · Agilent MXG Signal Generator, Brochure, literature number 5989-5074EN.
- · Agilent MXG Signal Generator, Configuration Guide, literature number 5989-5485EN.
- Agilent N5182A MXG Vector Signal Generator, Data Sheet, literature number 5989-5261EN.
- Agilent N5106A PXB MIMO Receiver Tester, Data Sheet, literature number 5989-8971EN.
- Agilent N5106A PXB MIMO Receiver Tester, Configuration Guide, literature number 5989-8972EN.

